

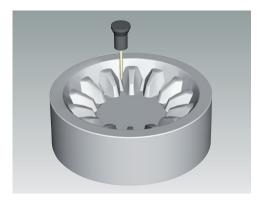
MOLD & DIE MILLER

Hardmilling solution with 5 axis, new technology for total profitability Yasda built-in B/C axis rotary table, promising reliability

New reliable solution for 5-axis die and mold making

- Structure based on YBM series known for highly accurate and rigid machines.
- Installing highly rigid and accurate rotary B/C-axis on the Y-axis realizes excellent control performance minimizing weight differences in movable bodies on each axis and setting the heavy movable bodies to lower center of gravity.
- Thermal displacement removal by intensive measures.
- Improvement in accessibility between spindle and workpiece, and operator and machining point.

Advantage of 5-axis machining and Applications Realizing high-precision and high surface quality required for die and mold manufacturing field by use of 5-axis machining technology


• 3+2 axes machining

(3 axes simultaneous machining by fixing the index angles of B/C-axes.)

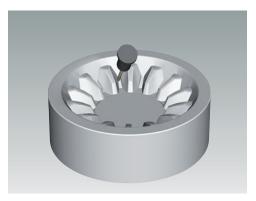
• 4+1 axes machining (4 axes simultaneous machining by fixing the index angle of B-axis.)

General 3-axis machining

Longer machining time due to longer cutter length to the bottom of workpiece and more delicate in cutting conditions to achieve high surface quality.

R1 ball end mill for finishing

- •Required under neck length is 25mm.
- •Required projection length from holder is 35mm.
- •Cutting feed rate: 400mm/min or less
- •Surface roughness: Ra 0.90 μ m


Machining time is reduced to approximately one-fifth

> Productivity largely increased

D

Index 5-axis machining

By tilting workpiece, cutter length is minimized thus surface quality is improved and machining time is reduced.

R1 Ball end mill for finishing •Required under neck length is 5mm only. •Required projection length from holder is 19mm only. •Cutting feed rate: 2000mm/min •Surface roughness: Ra 0.25µm

Application examples

By adopting the basic structure of a 3-axis machine from YBM V series, YBM Vi40 has comparable cutting ability. In combination with 5-axis machining, this machine can exert high performance for highprecision machining of highly hard materials in complicated shapes which are difficult for a three-axis machine.

Bevel gear forging die for trucks

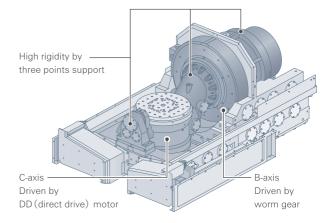
CVJ(Constant-velocity joint) punch for automobiles

Framework structured in highly rigid symmetric bridge type

The highly rigid integrated bridge structure dominates the field of ultrahigh precision and heavy cutting.

Equipped with a highly rigid and high-precision B / Caxis tilting rotary table unit is mounted on Y-axis, minimizing weight differences in movable bodies of each axis, and setting the heavy movable bodies to lower center of gravity.

With a highly rigid feed drive system adopting ball screws with large diameter and high speed interpolation control, demand for high-speed and high-precision machining is fulfilled.

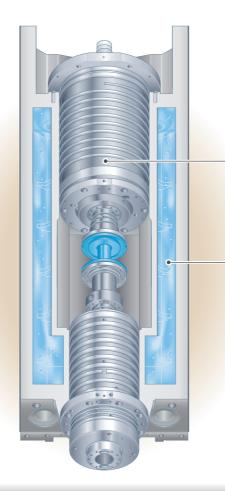

The machine body adopts a bridge type thermally symmetrical structure with less thermal displacement. High rigidity performance is further improved by a singlepiece structure (column and top beam) made of high grade cast-iron. and saddle for high performance.

Optimized weights of head

Highly precise throughhardened box guide ways are fastened so as to reach a straightness of 2μ m or less.

The in-house built highly rigid worm gear mechanism with high reduction ratio is used for tilting B-axis, which stabilizes the machine against tremendous changes in tilting moments depending on the position and heavy cutting loads. The B-axis is supported by bearings in 3 points, especially front side of the main support uses dia.400 mm of cross taper roller bearing, and helps improve control performance in reverse motion.

Direct drive motor is used for rotary C-axis, which is less influenced by disturbance and cutting force. By using DD (Direct Drive) motor in C-axis, highly accurate positioning without mechanical backlash is achieved.


YASDA's original mechanism enabling stable high quality machining

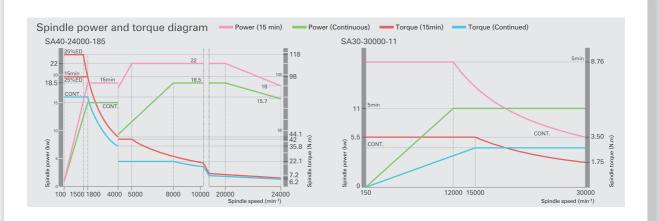
The preload self-adjusting spindle that machines at high degree of accuracy through whole speed range

(MODEL:SAtype)

In a conventional fixed-position preload type spindle, as preload increases along with heat generation of the bearing by high rotation of a spindle, the initial preload is set very low. This method, however, did not fulfill the requirement. "Preload self-adjusting spindle" developed by YASDA has a mechanism that applies a large preload at low-speed rotation, and the preload decreases in accordance with the amount of heat generation of the spindle bearing at high-speed rotation. Thus both heavy-duty cutting in a lowspeed range and low heat generation and high-precision rotation in a high-speed range can be achieved.

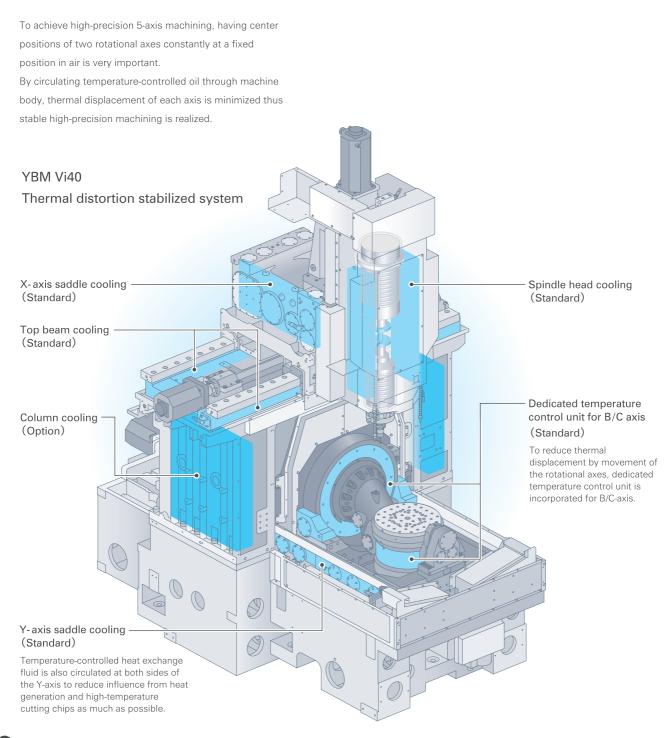
By this function, heavy-duty cutting, highspeed cutting of highly hardened steel and machining by a helical end mill that generates a thrust-reversing force can be performed in high precision.

Direct Drive System


The preload self-adjusting spindle and the spindle drive motor are connected co-axially by a diaphragm coupling, in order to achieve high precision rotation of the spindle throughout the full speed range of the spindle.

Spindle motor

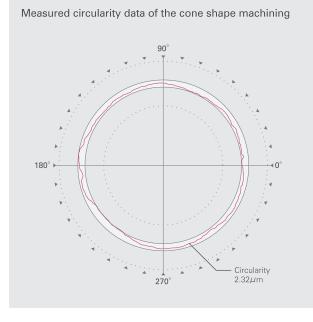
YASDA spindle motor employs a two coil changeover type winding, and helps high torque drive at both of high and low spindle speeds.


Spindle head Thermal distortion stabilized system

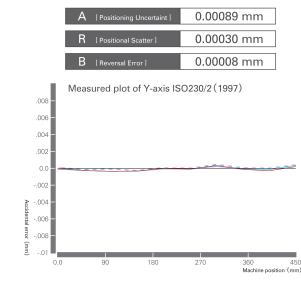
The spindle head and saddle of the machine contain the largest heat generating parts such as spindle, spindle motor and feed motor. This is why machining centers suffer from thermal distortion which can easily result in inconsistent machining accuracy. YASDA's design prevents such distortion by circulating heat exchange fluid throughout the spindle head, controlling the temperature of spindle head following the sensor for reference room temperature.

Advanced measures against thermal displacement

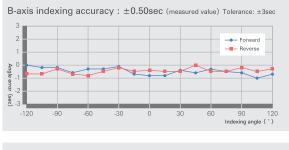
Thermal distortion stabilized system that helps assure highest accuracy during a long time running

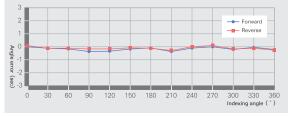


Outstanding Accuracy


Simultaneous 5-axis cone machining circularity 2.32 µm (Measured value)

This machine achieved 2.32μ m of circularity (measured value) in a tilted cone machining test according to NAS979 standard.

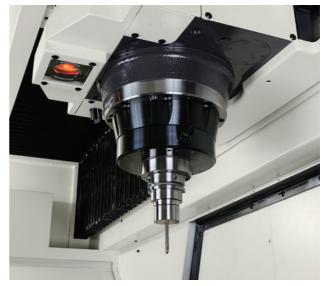



Positioning accuracy of Y-axis (measured value) ISO 230/2 (1997)

Indexing accuracy of B/C-axis

C-axis indexing accuracy : $\pm 0.20 \text{sec}$ (measured value) Tolerance: $\pm 1.5 \text{sec}$

4


Designed for high precision 5-axis operation

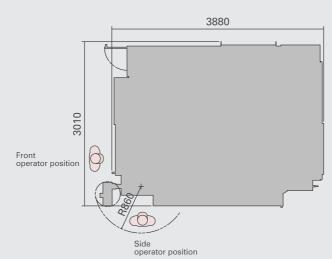
The distances between spindle and workpiece and between operator and machining point have been made closer to improve operability and workability

Operator-friendly design

Operators can approach the machining point not only from the front side but also from the right side, allowing a greater degree of accessibility and improved workability.

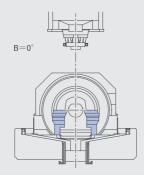
Extended spindle nose

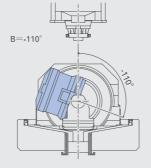
The spindle nose is extended by 50mm longer than a conventional machine (YBM950V) to reduce the interference zone.

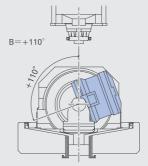

Incorporated Standard 5-axis functions

Variety of supporting functions for 5-axis machining are equipped as standard so that simultaneous 5-axis machining and indexing 5-axis machining are performed easier thus operator's burden is reduced.

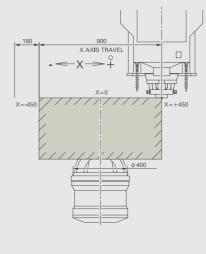
- Smooth TCP (Tool center point) control
- Tilted working plane command with guidance
- Work setting error compensation
- Work coordinate setting macro program (YASDA)

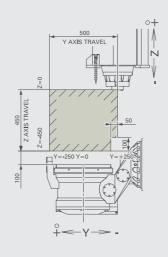

OUTLINE

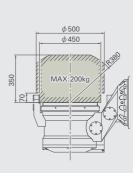

unit:mm M/C Height : 3515mm(~F.L.)



DIMENSION


B-axis tilting range





Maximum workpiece dimensions

YBMV140 SPECIFICATIONS

1. Specifications of base machine 1) Travel X-axis travel (Cross movement of spindle head) 900mm 500mm (With limitation) Y-axis travel (Longitudinal movement of table) Z-axis travel (Vertical movement of spindle head) 450mm Distance from table surface to spindle nose face $(B=0^{\circ})$ 100~550mm 2) Rotary table (B / C axis) Table working surface ¢400mm Table loading capacity 200kg Table surface configuration 44-M12Tap Table rotational axis (C-axis) 360deg. Table tilting axis (B-axis) ±110deg. Distance from tilting axis center to table surface 0mm SA40-24000-18.5 3) Spindle Spindle type (Preload self-adjusting spindle) 100~24,000min⁻¹ Spindle speed range AC18.5/22kW(Continuous/15min) Spindle drive motor Spindle taper hole 7 / 24 Taper No.40 Big Plus System 4) Feed rate Rapid traverse rate (X-,Y-,Z- axis) 20,000mm/min (C-axis) Max100min⁻¹ (B-axis) Max20min⁻¹ (X-,Y-,Z-axis) 5,000mm/min (Standard) Cutting feed rate (C-axis) Max100min⁻¹ (B-axis) Max20min⁻¹ 0.0001mm (deg) Least input increment 5) Automatic tool changer Tool shank type MAS BT40 JIS B6339-40P Pull-stud type 60 Tool storage capacity Maximum tool diameter / length / mass φ70mm / 250mm / 7kg 6) Mass of machine Approx. 15,000kg

7) Electric power capacity

8) NC unit

2. Standard equipment	
1) Optical scale feed back	X-,Y-,Z-,B-and C-axes 0.0001mm (deg)command compliant
2) Cutting oil unit (AA type)	2 Flood nozzles, standard tank capacity 170L
3) Splash guard	Manual door with top cover, with fluorescent lamp
4) Chip conveyor	Screw conveyor in the machine
5) Thermal distortion stabilized system	Spindle head, saddle, Y-axis and B/C-axis
6) Thermal displacement compensation for spindle	Standard data

3. CNC standard options	
1) Least input / travel increment	0.0001mm
2) Display	10.4" color LCD
3) Program storage length	320m (128KB)
4) Custom macro	Common variable : 100
5) Number of registerable programs	250
6) Automatic corner override	
7) Tool offset pairs	64 pairs
8) Tool offset memory	C memory
9) Run hour and parts count display	
10) Extended part program editing	
11) Smooth TCP	
12) Tilted working plane command with guidance	
13) Work coordinate system setting macro	

39kVA

FANUC 31i-A5

for rotational axis equipped machine (YASDA)

SPECIFICATIONS (Optional)

1. Optional equipment	
1) Spindle nose face configuration	HSK-A63
2) High-speed spindle (BT30)	AC5.5/11kW (Continuous / 5min) 、150~30,000min ⁻¹
3) Maximum tool storage capacity	Total : 90
4) Signal tower (Multilayer signal lamp)	Red, yellow, green (Flashing)
5) Spindle center through air coolant	Micro fog coolant unit
6) Spindle center through flood coolant	3.5/6MPa (With cutting fluid temperature control unit)
7) Scraper chip conveyor with external separator	Drum filter equipped
8) Cutting fluid temperature control unit	
9) External mist coolant	Manufactured by Bluebe / 2 nozzles
10) Oil skimmer	Oil Pure or belt type
11) Washing gun	One position (Operator position)
12) Mist collector	1 unit
13) Automatic tool length compensation and tool breakage sensor	Manufactured by Metrol / Touch probe
14) Tool length / radius compensation and tool breakage sensor	Manufactured by BLUM/NT-H type (Touch and laser)
15) Automatic measuring system	Manufactured by Renishaw/Touch probe
16) High-speed machining function (YASDA HAS-3 system)	Maximum feed rate12,000mm/min
17) Thermal distortion stabilized system	With weekly timer
18) Weekly timer	
19) Thermal displacement compensation for spindle	Individual data
20) AWC door	
21) Robot interface	Compatible with System 3R and EROWA
2. CNC Options	
1) Part program storage	Total : 256KB · 512KB · 1MB · 2MB · 4MB · 8MB
2) Extensional number of registerable programs	Total : 250 · 500 · 1,000 · 2,000 · 4,000
3) Background editing	
4) Helical interpolation	G02 · G03
5) Conical / spiral interpolation	G02 · G03 (Helical interpolation is required)
6) Inch / Metric conversion	G20 · G21
7) Scaling	G50 · G51
8) Coordinate system rotation	G68 · G69
9) Programmable mirror image	G50.1 · G51.1
10) Rigid tap	M29 (G84 · G74)
11) Optional block skip	Total : 9
12) Tool offset pairs	Total : 99sets · 200sets · 400sets · 499sets · 999sets
13) Custom macro common variable	Total : 600
14) Addition of workpiece coordinate	48sets · 300sets
15) Tool management	
16) Normal direction control	G40.1 · G41.1 · G42.1
17) Cs contouring control	
18) Three-dimensional coordinate conversion	G68 · G69
19) Inverse time feed	G93
20) Ethernet function	FOCAS2 / Ethernet function
21) Data server function	Fast data server, Capacity 1GB

YASDA PRECISION TOOLS K.K.

www.yasda.co.jp

Main Office&Factory:

1160Hamanaka,Satosho-cho,Okayama,719-0303,Japan PHONE:+81/865-64-2511 FAX:+81/865-64-4535

Representative Office:

Firtz-Vomfelde Strasse 34,D-40547 Düsseldorf,Germany PHONE:+49/211-53-883214 FAX:+49/211-53-883174

YASDA PRECISION AMERICA CORPORATION

62 North Lively Boulevard Elk Grove Village,IL60007 U.S.A. PHONE:+1/847-439-0201 FAX:+1/847-439-0260

YASDA PRECISION TOOLS(SHANGHAI) K.K.

Rm.1001 Orient International Plaza Part(C), No.85 Lou Shan Guan Rd,Shanghai,China PHONE:86-21-62700955 FAX:86-21-62700970

* Export of the products and associated software, and related services are subject to prior approval of the Japanese government according to "Foreign Exchange and Foreign Trade Law".